If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-18x-52=0
a = 10; b = -18; c = -52;
Δ = b2-4ac
Δ = -182-4·10·(-52)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{601}}{2*10}=\frac{18-2\sqrt{601}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{601}}{2*10}=\frac{18+2\sqrt{601}}{20} $
| 8/(32^2a)=32^(a+1) | | X+1=0x-1=0x2-1=0 | | 8/32^2a=32^(a+1) | | 380=15.20/(x-0.07) | | 7−6b=0 | | -3+v/5=22 | | 175=10j+11 | | 8=32^3a+1 | | x^2=19x-84 | | 9x+3x+5=113 | | 4444=3*4*79+x | | 10x^2-52x+64=0 | | c/5−10=3 | | 4x-10=5x+8 | | 11=v/29+10 | | 6+q/35=7 | | 18=5+z/10 | | 16/w=2 | | 3x^2-6x-56=0 | | 9a=51 | | 2=58/r | | 2=10/y | | 8=y+6/2 | | 3/x+1-1/x-1=3x/x2-1 | | 7=7+w/6 | | u/6+5=7 | | 11=5+6y | | 42=6(d+4) | | 3x-10=2(x+2) | | 1/2x+3=1/3x-3 | | 3+1x=2x | | x^2+18x+28=81 |